Asymptotic and robust stability of genetic regulatory networks with time-varying delays
نویسندگان
چکیده
The robust asymptotic stability problem of genetic regulatory networks with time-varying delays is investigated. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into two subintervals, and then the convexity property of the matrix inequality and the free weighting matrix method are fully used in this paper. By using a Lyapunov functional approach and linear matrix inequality techniques, the stability criteria for the delayed genetic regulatory networks are expressed as a set of linear matrix inequalities (LMIs), which can lead to much less conservative analysis results. A genetic network example is given to illustrate that the results in this paper are more effective and less conservative than some existing ones.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملNew Results on Asymptotic and Robust Stability of Genetic Regulatory Networks with Time-varying Delays
The robust asymptotic stability problem of genetic regulatory networks with time-varying delays is investigated. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into two subintervals, and then the convexity property of the matrix inequality and the free weighting matrix method are fully used in this paper. By using a Lyapunov functional approach...
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 71 شماره
صفحات -
تاریخ انتشار 2008